
regional partner

Introduction to Parallel Computing
June, 2017

regional partner

What Can Parallel Computing Do?

Pluses
– Faster time to results
– Bigger problems feasible in memory or

time
Minus

– More costly in equipment and expertise

regional partner

Outline

Parallel computer architectures
Programming models
MPI example
OpenMP example
Performance measurement
Terminology

regional partner

Monitoring Progress
IMAGINE...

You have 1,000 index cards, each holding a 4-digit number.
Your task is to find their sum as soon as possible.
You are in charge of 1,000 accountants,
seated at desks in 25 rows of 40.
Each accountant can pass cards to the four seated nearest
in front, behind, to the left and to the right.
Employ as many or as few of the accountants as you like.

How do you distribute the cards? How do you get the sum back?

regional partner

Parallel Architecture

• Also called “multiprocessors”, e.g. dual-core or quad-core CPUs
or even 16-core, 22-core on modern CPUs

• “cc-NUMA” a common implementation - cache-consistent
Non-Uniform Memory Access

• “SMP” = “symmetric multiprocessor”, often used loosely for “shared
memory processor”

Shared Memory

Processor Processor Processor Processor

Memory

regional partner

Parallel Architecture

Distributed Memory

Interconnect can be Ethernet...
...or something faster and more expensive
 like Infiniband or Myrinet

Interconnect

Processor Processor Processor Processor

Memory Memory Memory Memory

regional partner

Parallel Architecture

 Contemporary clusters usually built on this model

Hybrid

interconnect

host or node

processor processor

Memory

host or node

processor processor

Memory

regional partner

Programming Model 1

Independent Tasks
Near 100% efficiency
Very simple to implement

• handled at job-manager level
• no changes to serial application code
• “Embarrassingly parallel”
• so-called because it is of no theoretical interest
• better term: “perfectly parallel”

Similar terms:
• “parametric parallelism”
• “High-throughput computing”

regional partner

Programming Model 2

Shared Memory
Each process has

• read/write access to a shared memory area
• a private memory area (stack)

Maps well to shared-memory computers
• practical limit: size of a single machine

Communication between processes is via shared memory
• potential for race conditions

Processes sometimes called “threads” or LWPs (light-weight
processes)
OpenMP and Posix Threads two popular implementations

regional partner

program saxpy
integer, parameter :: n=10
real a,x(n),y(n)
integer i
read *,a,x(1:n),y(1:n)

do i=1,n
 y(i) = a*x(i) + y(i)
end do

print *,y(1:n)
end program

OpenMP Example: saxpy.f90

saxpy ≘ single precision "ax+y"

● loop with known number of
iterations

● each iteration is independent
from the others

regional partner

program saxpy
integer, parameter :: n=10
real a,x(n),y(n)
integer i
read *,a,x(1:n),y(1:n)
!$OMP PARALLEL PRIVATE(i) SHARED(a,x,y)
!$OMP DO
do i=1,n
 y(i) = a*x(i) + y(i)
end do
!$OMP END DO
!$OMP END PARALLEL
print *,y(1:n)
end program

OpenMP Example: saxpy.f90

saxpy ≘ single precision "ax+y"

regional partner

$ cat input
1
9 8 7 6 5 4 3 2 1 0
9 8 7 6 5 4 3 2 1 0

$ pgf90 -mp saxpy.f90 -o saxpy
$ export OMP_NUM_THREADS=2
$./saxpy <input
 18.0000 16.0000 14.0000 12.0000
 10.0000 8.0000 6.0000 4.0000
 2.0000 0.0000
$

OpenMP Operation

regional partner

Programming Model 3

Message-Passing
Each process has its own independent memory

• Maps well to distributed-memory computers
Communication between processes is explicit

• Application has to be reprogrammed...
• ...maybe even redesigned

Analogous to how teams of people work

• “You and I don't share memory, we pass messages” – N. Ostlund
Scales to arbitrary number of processors

• ...though perhaps not efficiently!
MPI most popular standard for message-passing programming

regional partner

MPI Example: send-recv.c
#include <mpi.h>
#include <stdio.h>
int main(int argc, char *argv[])
{ int myRank, msg=12345, source=0, destination=1, tag=99;
 MPI_Status status;

 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&myRank);

 if (myRank == source) {
 MPI_Send(&msg, 1, MPI_INT, destination, tag, MPI_COMM_WORLD);
 printf ("Process %d sent %d to process %d.\n", myRank, msg, destination);

 } else if (myRank == destination) {
 MPI_Recv(&msg, 1, MPI_INT, source, tag, MPI_COMM_WORLD, &status);
 printf ("Process %d received %d from proc %d.\n", myRank, msg, source);
 }

 MPI_Finalize();
}

regional partner

MPI Operation

$ mpicc send-recv.c -o send-recv

$ mpirun -np 2 send-recv
Process 0 sent 12345 to process 1.
Process 1 received 12345 from proc 0.

$

regional partner

Another Option

Auto-Parallelizing Compilers
Some compilers will try to parallelize code in OpenMP
style but without the programmer supplying OpenMP directives,
if told to:

• PGI: -Mconcur
• Intel: -parallel

Like OpenMP,

• works on individual loops
• $OMP_NUM_THREADS controls thread count

regional partner

Performance: Speedup

 Sequential execution time
 Speedup = ------------------------------------
 Parallel execution time

Example:

6 hours to run on 1 processor (sequential)
1 hour to run on p processors (parallel)
→ 6h/1h = speedup of 6

Michael J. Quinn, Parallel Programming in C with MPI and OpenMP (McGraw-Hill, 2004).
 ISBN 0-07-282256-2

regional partner

Performance Speedup

 Sequential execution time
 ψ ≡ Speedup = ------------------------------------
 Parallel execution time

Consider:

• The time spent in sequential work, σ
• The time spent in parallelizable work, φ
• Parallel overhead costs, κ
 ...for a problem of size n running on p processors:

regional partner

How Much Speedup Can You Get?

Assume parallel overhead κ is negligible (Optimist!)

Define serial fraction fs= σ/(σ+φ)

Amdahl's Law

regional partner

How Much Speedup Can You Get?

regional partner

How Much Speedup Can You Get?

regional partner

How Much Speedup Can You Get?

regional partner

How Much Speedup Can You Get?

regional partner

How Much Speedup Can You Get?

regional partner

Efficiency

 Speedup
 Efficiency = ------------------------------------
 Processors

 Sequential time
 = ------------------------------------
 Processors x Parallel time

• A fraction between 0 and 100%
• Depends on number of processors!
• Varies with size of problem

regional partner

Scalability

A measure of the ability to increase performance
as the number of processors increases

As the problem size increases,
so (usually) does the parallel fraction,
and hence the speedup,
and hence efficiency.

regional partner

Performance: Speedup

The time spent in sequential work, σ, tends to stay
near-constant with problem size.
The time spent in parallelizable work, φ, usually grows with
problem size.
Parallel overhead cost, κ,

• also tends to grow with problem size
• depends critically on the algorithm
• and on communication speed (the interconnect)

regional partner

Communication Costs

Passing messages takes finite time.
(So does coordinating the use of shared memory.)

latency, λ

Time

0 Message size

bandwidth, β

regional partner

Other Resources
Books

• Michael J Quinn, Parallel Programming in C with MPI
and OpenMP (ISBN 0-07-282256-2)

• ...many others !...
Websites

• http://www.mcs.anl.gov/research/projects/mpi/
• http://openmp.org/wp/

ACENET User Wiki
http://www.acceleratediscovery.ca/wiki/ACENET

Email support@ace-net.ca

